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Summary. The effect of  assortative mating on the 
genetic correlation between traits X and Y is con- 
sidered. Assortation on trait X changes the magnitude 
of the genetic correlation but not its sign. There are 
two situations depending on the signs of the correlation 
between mates (•) and of the random mating genetic 
correlation (0): 1) if sign (0 )=  sign (Q), then 6 >  0, 
where t7 is the genetic correlation at equilibrium after 
continued assortation, and 2) if sign (0) :~ sign (0), then 
6 < 0. However, negative assortative mating is virtually 
powerless to alter the magnitude of the genetic correla- 
tion. The consequences of  a "mixed" assortation model, 
e.g., high milk production females mated to fast 
growing males and lesser productive females mated to 
slower growing sires, were also studied. "Mixed" posi- 
tive assortation always increases the genetic correla- 
tion, but negative assortation decreases it. The implica- 
tions of assortative mating on correlated responses to 
selection and on the equilibrium covariances between 
relatives for pairs of traits are discussed. 
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Introduction 

When the individuals in a mating pair are phenotypi- 
cally more similar or dissimilar than what they would 
otherwise be if the pairs were chosen at random from a 
population, it is said that the mating is assortative. If  
the phenotypic value of both mates deviates from the 
mean of the population in the same direction, mating 
is positive assortative; if  the deviation of one of the 
mates is positive and the other is negative, mating is 
negative assortative. 

Jennings (1916) and Wentworth and Remick (1916) stud- 
ied the consequences of assortative mating for a single locus, 
two alleles, model. Assortative mating under polygenic in- 
heritance was considered by Fisher (1918), Wright (1921), 

Crow and Felsenstein (1968), Bulmer (1980) and several other 
authors. In a multifactorial model, assortative mating has 
limited impact on heterozygosity unless the correlation be- 
tween the phenotypes of mates is nearly unity and the number 
of loci is small (Lush 1948; Crow and Felsenstein 1968). Also, 
positive assortative mating substantially increases the genetic 
variance, particularly if the trait is highly heritable (e.g. 
Bulmer 1980). The approach to equilibrium, both in terms of 
heterozygosity and genetic variance, is rapid, with most of the 
increase in variance occurring in the first two generations after 
assortation starts. Reeve (1953, 1961) considered the estima- 
tion of the genetic correlation from offspring-parent co- 
variances when parents were mated assortatively. Latter 
(1965) derived the covariance between half-sibs and the effects 
of genotype x environment interaction on the covariance be- 
tween traits of Phalaris tuberosa under assortative mating. 

Several artificial breeding companies in the USA offer 
"corrective mating programs". These consist of choosing a 
bull mate on the basis of the attributes of individual cows. 
"Corrective" mating involves negative assortation, i.e., mating 
bulls that excel in some trait in which the cows are deficient. 
Dishman et al. (1981) presented data suggesting that negative 
assortative mating is widely practiced in the US dairy in- 
dustry. It is, therefore, important to take into account the 
effect of assortative mating on estimation of genetic param- 
eters and sire evaluation programs. Otherwise, estimates of 
heritabilities and genetic correlations would be biased, and 
the prediction error variance of sire evaluation by progeny test 
would be unnecessarily large. 

This paper describes the effect of assortative mat- 
ing on the genetic correlation between traits and the 
equilibrium covariance between full-sibs, half-sibs, 
offspring-parent and grandoffspring-grandparents for 
pairs of traits. These covariances are those usually 
employed to estimate genetic parameters in animal 
breeding applications. The expressions for the equili- 
brium covariances would permit taking into account 
assortative mating in genetic evaluation models. 

Assortative Mating and the Genetic Correlation 

Conventional Assortation Model 

Assortative mating is practiced for a trait X and the 
correlation between mates is Q. The models describing 
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the relationship between the additive genotypic values 
of an offspring (A~:, A~r; Y is another trait) and those 
of his parents (A s,  Ay,S Ax,D A ~  are 

IA s+ 1A~+ex, (1) Ax~ = -5 
A o 1 S 1 D = 7 Ay + 5 A y  + e y ,  (2) 

where e x ~  (O, VarX/2) and e y ~  (O, VarY/2) are 
random segregation residuals with Cov(ex,  ey )=  
CovXY/2, where Coy xY is the additive genetic co- 
variance under random mating. Equations (1) and (2) 
permit to write the recursive relationship 

XY 1 XY 1 S D 
COVA(t+I) = "~ COVA(t) Jr- "u COV (Ax, Ay) 

1 D S 1 + ~  Coy (Ax, Ay) + 7  C~ (3) 

where xY COVA(o is the additive genetic covariance at time 
t. Under multivariate normality, one can consider the 
conditional expectations of the genotypic values given 
the X-values (Bulmer 1980) and write 

Coy (A s, A ~  = Coy [hx2(t)(X s - Px), 0(t) hx(t) hv(t) 

- 1  
�9 GX(t) O'y(t)(X D -  ] Ix ) ]  

xY 2 
= COVA(t) 0 hx(t)  = C o v  (A D, A s) , (4) 

where 2 2 hx(t) and hy(t) are the heritabilities of X and Y, 
2 2 respectively, at time t; ax(t) and aY(t) are phenotypic 

variances at time t, 0(t) is the genetic correlation at time 
t, and/Ix = E (X s) = E (XD). Hence, (3) becomes 

1 CovXL (5) I CovAXYt)(1 + 0 hx2(t)) + "~ CovAX~t+I) = ~- 

At equilibrium, CovA(t+l)xY = CovX~) = Coy xY, and re- 
arranging (5), one obtains 

0 /VarX VarY/w 

0-- 1 - fix~ \~--~r~ ~ r A  Y/ (6) 

where 0 and 0 are the equilibrium and random mating 
genetic correlations, fix z is the equilibrium heritability of 
X, and 9ar  x, 9,~ are the equilibrium additive genetic 
variances of X and Y, respectively. 

The steady-state equations for the genetic variances 
of X and Y can be obtained in a similar manner with 

Vx - 1 - e ~x ~. (73 

and 

v~ 02. = - 0 (8) 

Equation (7) illustrates the well known result (Crow 
and Felsenstein 1968) that positive assortative mating 
(~ > 0) increases the genetic variance: as ~ and fi2 

9A/VA. Note from (8) that increase, so does the ratio x x 
positive assortative mating also increases the genetic 
variance of a correlated trait (Y) to an extent depend- 

ing on the magnitude of 6. The equilibrium heritabili- 
ties can be obtained by taking the total variances of X 
and Y in a random mating population as 1. Then 
fix z =garX/(gar  x + l - h x  z) can be used in (7) with 
V x = hx 2 to solve a quadratic equation on 9A x (Bulmer 
1980). Its positive root is 

~/ar x _ 2hx 2 - 1 +[1 - 4Q hxZ(l - hx2)] a/2 (9) 

2 ( l - o )  

Likewise, the equilibrium genetic variance of the 
correlated trait Y would be 

9ar~ = 2h~ - 1 + [1 - 40 02 hx2(1 - hx2)] v2 
2 (1 - 0 gz) (10) 

and fig = 9arX/(gar~ + 1 - h~). Note that (10) depends 
on 0, the equilibrium genetic correlation. 

Using (7) and (8) Eq. (6) can be written as 

(5=o( 1'2 
- i - _ - ~ x  ~ ] (11) 

which indicates that assortation for X changes the 
magnitude of the genetic correlation between X and 
Y but cannot change its sign. Equation (11) can be 
solved explicitly for 6 as 

V 1 (12) 0 = 0  1-01ix2(1-02)  ' 

yielding the following conditions: 

1) I f 0 >  0 and 0 >  0, then 0 >  0; 
2) I f 0 >  0 and ~ <  0, t h e n 6 <  0; 
3) If 0 < 0 and ~ > 0, then O < 0; and 
4) I f 0 < 0 a n d ~ < 0 ,  t h e n 0 > 0 .  

Values of 0 for selected combinations of 0, 0 and 
h~ are presented in Table 1. Negative assortative mat- 
ing is virtually powerless to alter the magnitude of the 
genetic correlation, even when the absolute value of the 
random mating genetic correlation is large or when the 
trait for which assortation is practiced (X) is highly 
heritable. On the other hand, strong positive assorta- 
tire mating can have a marked effect on the genetic 
correlation, particularly if the heritability of X is large. 
This could be useful in animal improvement programs. 
In swine, for example, backfat thickness and amount of 
lean in the carcass are negatively genetically correlated, 
i.e., selection against high backfat results in leaner 
carcass. Positive assortative mating for backfat would 
increase the genetic variance of backfat thickness and 
of amount of lean, and would make the genetic 
correlation between the two more strongly negative. 
Hence, selection against backfat with positive assorta- 
tire mating of parents would be expected to yield a 
larger correlated response in lean cuts than if assorta- 
tion were not practiced. The expected correlated re- 
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Table 1. Values of the equilibrium genetic correlation under 
assortative mating for trait X for selected combinations of the 
random mating genetic correlation (0), the correlation be- 
tween mates (0) and the heritability ofX (h~ 

h~ 

0 ~ 0.05 0.20 0.40 0.60 

- 0.6 - 1.0 - 0.59 - 0.57 - 0.54 - 0.52 
0.4 - 0.60 - 0.62 - 0.64 - 0.66 
0.8 - 0.61 - 0.64 - 0.71 - 0.78 

- 0.4 - 1.0 - 0.39 - 0.37 - 0.35 - 0.34 
0.4 - 0.40 - 0.42 - 0.43 - 0.45 
0.8 - 0.41 - 0.44 - 0.50 - 0.59 

- 0.2 - 1.0 - 0.20 - 0.19 - 0.17 - 0.16 
0.4 - 0.20 - 0.21 - 0.22 - 0.23 
0.8 - 0.20 - 0.22 - 0.26 - 0.32 

0.2 - 1.0 0.20 0.19 0.17 0.16 
0.4 0.20 0.21 0.22 0.23 
0.8 0.20 0.22 0.26 0.32 

0.4 - 1.0 0.39 0.37 0.35 0.34 
0.4 0.40 0.42 0.43 0.45 
0.8 0.41 0.44 0.50 0.59 

0.6 - 1.0 0.59 0.57 0.54 0.52 
0.4 0.60 0.62 0.64 0.66 
0.8 0.61 0.64 0.71 0.78 

sponse of  a trait  Y to selection for a t rai t  X under  
assortative mating can be expressed relat ive to the 
expected correlated response under  r andom mat ing  of  
parents  as 

AGv.x (Assortative) 0 [ ~arX t uz fix 

AGy.x (Random) = -0- \ V--V-~rA Y ] hx 

fx { 1 / 
= hx [ l _ q f i x 2 ( l _ 0 2 ) ] ( l _ o f x 2 O 2 )  I . (13) 

In the case of  backfat  (X) and amount  of  lean (Y) we 
can take hx z = . 5 0 ,  and 0 = -  .80 (Jensen et al. 1967). 
Assuming 0 = .80, one obtains fix 2 = .691, and O= - .89. 
Hence, (13) becomes 

A Gy.x (Assortat ive)/A G~.x (Random)  = 1.75, 

i.e., the correlated response in amount  of  lean in the 
carcass can be increased by about  75% by posi t ively 
assorting parents on the basis of  their  backfat  thickness 
measurements.  Likewise,  if  two traits have a posit ive,  
favorable genetic correlat ion such as milk  yield and 
protein yield per  lactation, posi t ive assortative mat ing  
of  parents  for milk yield in a selection program for this 
trait would enhance the correlated response in prote in  
yield. If X and Y have a posit ive or negative unfavor-  
able genetic correlat ion such as growth rate and calving 
difficulty or milk yield and fat test, negative assortat ive 

mating of  parents would reduce the absolute  value of  
the genetic correlat ion to a l imited extent (Table  1) but  
would decrease the genetic variance (Eqs. 7, 8). 

Positive assortation on X would increase the genetic 
variance of  Y more than direct  assortat ion on Y i f  

~A Y < ~A Y , (14) 

where "~'A Y is the equi l ibr ium genetic var iance of  Y 
when positive assortat ion is for Y. Assuming  that  the 
marital  correlation is the same under  both systems, the 
inequality in (14) can be writ ten as 

1 - 0 fi~, j2  < l - ~ f ~ ,  (15)  

where f~ is the equi l ibr ium her i tabi l i ty  of  Y under  
direct assortation for Y. Equivalently,  (14) impl ies  

2 2 ~2 
flY/fix < (16) 

indicating, in general,  that  posit ive assortat ion for a 
highly correlated trait  of  high her i tabi l i ty  (X) would 
be more effective in increasing the genetic var iance of  
Y than positive assortat ion on Y itself. F o r  example ,  
suppose bir th weight (X) and "heal th  status" at wean-  
ing (Y) in sheep have parameters  hx z = .25, hy z = .05 
and 0 = .40 in a random mat ing populat ion.  I f  parents  
are positively assorted on their  bir th weights with 

= .8, then fix e = .31 and 0 = .45. On the other  hand,  i f  
parents are assorted on their  "heal th  status" scores, 
1]~ = .052 and 0 =  .41. Since .052/.31 < (.45) 2, response 
to selection for "heal th"score  would be larger i f  parents  
are assorted posit ively for bir th  weight than i f  they are 
assorted on "heal th"  scores themselves. Posit ive assor- 
tation for "heal th"  scores would yield a larger  response 
than no assortation at all. 

Mixed Assortation Model 

Mating pairs are assorted such that  the correla t ion 
between the phenotypic  values o f  traits X in the males,  
say, and Y in the females, is 0". This type of  assortat ive 
mating arises when complementar i ty  is to be ob ta ined  
in the offspring, e.g., high milk  product ion  females are 
mated to fast growing males. It can also arise with sex 
limited traits: females of  high ovulat ion rate ma ted  to 
males of  large scrotal circumference.  The models  de- 
scribing the relat ionship between the addi t ive  geno- 
typic values of  an offspring and those of  his parents  are 
as in (1) and (2). 

For  the X-varia te  

X 1 X 1 S 1 Var x.  (17) VarA(t+l) = -ff VarA(t) + 7 Coy (Ax,  A~) + 

Now, in the condit ional  d is t r ibut ion under  mul t ivar ia te  
normality, write 
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Coy (A s ,  Ax D) = C o v  [hx2(t) (X s - ~tx), 

�9 0(t) hx(t) hg(t) fix(t) fiY(It) (yD _/Iy)]  

= 0(t)hx(t)hy(t)O* VarAX(t) �9 (18) 

H ence, 

X 1 X 1 Var x (19) VarA(t+l) = -g VarA(t) (1 + 0(t) h x l t )  h y ( t )  O*) + "~ 

and, at equilibrium 

Var x 
9ar~" = 1 - (7 fix fly 0*. (20) 

If sign (t~ = sign(0*), then Oar x > VarX; otherwise, 
Vara x > Oar x. 

Similarly, 

VarYa(t+l) 1 v = 5 VarA, (21) 2 Vara(t) (1 + 0(t) hx( t )  hv(t)  O*) Jr- 1 Y 

with the steady-state equation being 

VarA Y 
9ar~ - 1 - 0 f x  f y  0". (22) 

A comparison of (20) and (21) indicates that this mixed 
assortation model elicits the same relative change in 
the genetic variances of  X and Y. 

The recursive relationship for the additive genetic 
covariance is 

x g  1 XY 
COVA(t+I) = ~" COVA(t) 

+ �88 [Coy (A s ,  A D) + Cov(A D, AS)] 

1 CovaXV. (23) +-~ 

In the conditional distribution of  the multivariate 
normal model 

Coy (A s ,  A D) = Coy [hx2(t) (X s - /2x) ,  2 hy(t) ( y D  _ l / y ) ]  

hx2(t) 2 O* (24) = hg(t) fix(t) Oy(t) , 

and 

Cov(A s ,Ax D) 0~t)~2 ~2 , (25) = nx(t) ny(t) O fix(t) fiY(t). 

Using (24) and (25) in Eq. (23) we can write, after 
some algebra 

C O V A ( t + l )  = -ff COVA(t )  1 + 7 hx(t) hy(t) \ ~ ]  

1 XY + 7 COVA . (26) 

At equilibrium 

O(garX garYA)1/2 l l - - l  o* fx  fy  (-~---?) ] 

= 0 (Var x VarY) v2, (27) 

which, using (20) and (22), can be rewritten as 

(7-71 f x f i v 0 * ( ~  + 1) = 0(1 - (TfxfYO*),  (28) 

and note that (7 = 0 only if 0* = 0. Letting k = fx  fly 0*, 
(28) can be rearranged as a quadratic equation on (7 

( k )  k 
O 2 -  (1 + Ok) t7+ ~ - +  0 =  0 ,  (29) 

which has two distinct real roots as 

A = ( l + 0 k ) 2 - 4 k (  k ) 2  + 0  

-- 1 + k2(02-  1) 

is always positive. This is so because A > 0 implies 
02 > (k 2 -  l ) /k  2, which is always true because Ik] < 1. 
The two roots of (29) are 

! ' ( 7 = 0 + 1 -  + / 7 +  ~ - -  1. (30) 

This expression is not explicit in (7 because k depends 
on fix and fly which, in turn, depend on (7 (Eqs. 20, 22). 
However, we have the following cases: 

1) Mixed Positive Assortation (0*>0)  Always In- 
creases the Genetic Correlation 
To prove this, consider the statement (7 < 0. From (30) 
this is equivalent to proving that k- '  + (0  ~ + k - z -  1) vz 
< 0, and k - '  _((/a + k-2 _ l)V2 < 0. The first expression 
can never be true as with 0* > 0, k -1 is positive, and 
k - 2 -  1 is also positive. The second statement with 
0* > 0, would be equivalent to 02 > 1, which can never 
be true. Hence, if 0 * >  0, (7 < 0 is false. Therefore,  if 
0* > 0, the genetic correlation is always increased. 

2) Mixed Negative Assortation (0* < 0) Always De- 
creases the Genetic Correlation 
Consider d > 0. From (30) this would be equivalent to 
k < +(0 ~ + k -2 - -  1) 1/2 > 0, and k < -(02 + k -2 - 1) 1/2 > 0. 

The first expression can be written as 

(02 + k -2 _ 1) 1/z > - k < 

implying 02> 1, which is never true. Likewise, the 
second statement implies k- '  > (02 + k -2 - 1) 1/2, which 
can never be true as with 0 * <  0, k -~<  0. Hence, if 
0 * <  0, the statement (7> 0 is false and the genetic 
correlation is always reduced. 

In summary, mixed positive assortation ( 0 * >  0) 
would be indicated for traits with favorable positive 
genetic correlations, e.g., growth rate and amount  of  
lean tissue in the carcass in beef cattle, or for traits 
with unfavourable negative genetic correlations such as 
milk yield and protein percentage. On the other hand, 
mixed negative assortation could be useful to reduce 
unfavorable positive genetic correlations (growth rate 
and feed intake) or to enhance negative favorable 
negative genetic correlations such as backfat thickness 
and feed efficiency. Equations (20) and (22) indicate, 
however, that positive mixed assortation will decrease 
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the additive genetic variance of the traits in question if 
the genetic correlation between them is negative. Simi- 
larly, negative mixed assortation will decrease the 
genetic variance if the genetic correlation is positive. 

Covar iances  B e t w e e n  Re la t i ve s  

Several authors (e.g., Fisher 1918; Bulmer 1980) de- 
rived the correlation between relatives for a trait under 
assortative mating. Reeve (1953, 1961) obtained off- 
spring-parent covariances for pairs of traits, and Latter 
(1965) presented the correlation between half-sibs. In 
this section, we consider full-sibs, half-sibs, offspring- 
parent and grandoffspring-grandparent covariances as 
these are the ones usually utilized in animal breeding 
for estimation of genetic parameters. The basic as- 
sumptions involve a population in equilibrium after 
repeated assortative mating and those of Bulmer's 
(1980) infinitesimal model, i.e., that contributions of 
the dominance and environmental components to the 
covariance between relatives are unaffected by assorta- 
tive mating. We present the additive genetic contribu- 
tion to the covariances between relatives. 

Full-sibs 

The phenotypic values of sibs 1 and 2 are X ~ yOl, Xo2 
and yO2, and let E~ x, E~ ~, E~ 2, E~ 2 be environmental ef- 
fects affecting sib records. Using (1) 

Coy (X ~ X ~ 

C o v ( ~ A x  s 1 I, ~ o l l  s 1 = + -~ Ax + ex+ Lx, 7 Ax+ -g Ax + e'x + E~) 
1 9ar  x 1 S = 7 + 2 Cov (Ax, AxD), (3 I) 

as the segregation residuals ex and e~ are independent- 
ly distributed. The variables A s,  A D can be replaced 
by their expectations conditional on the sire and dam's 
phenotypes so 

Cov(A s,  Ax~ = Cov[fix2 (X s - Px), fix2(X D -/xx)l  

= fix ~ 0 VarX. (32) 

Hence, (31) becomes 

Cov(XO~, xO2) = 1 - x 7 VarA (1 + 0 fix2) �9 (33) 

Similarly, 

Cov (X ~ yO2) 
1 S 1 D , 02 1 S 1AxD + ex + E) ,  2 Ay +_~ A y + e v + E y  ] = Cov [-~ Ax + 7 

= -~ C o v ~  + �88 (A s,  A~) + Coy (Ax D, AS)]. (34) 

Replacing A s ,  A~, A~, A s by their conditional means 

Cov [A s,  A~] = C o v  [Ax D, A s] 2 - xY = fix Coy.  0,  (35) 

and using (35) in (34) 

Cov(X ~ yO2) =..~. COV A 1  ^ xY(1 + 0  fix2). (36) 

Also, 

Cov (yO,, yO2) = Cov (71 AyS + ~1 A~ + ey + E~ ~, 
1 A ~ + I  D 1 Y ~2 �9 ~ VarA (1 fix z 0) (37) 7 Ay + e~ + E~r 2) = + 

H alfisibs 

The notation is as before, with ol and o2 denoting the 
half-sibs in question, and D, and D2 indicating their 
unrelated dams. The following covariances are con- 
sidered: Cov(X ~ X~ Cov (X ~ yO2)= Cov (X ~ yOl), 
and Cov (yOl, yO~). 

First 

Coy (X ~ , X ~ 

Cov[-~ s 1AxDl+ex+Lx ,~Ax+-~Ax  + e x + E x ] .  = A x + ~  i:201 i S I D2 t o2 

(38)  
Then 

= 1 % r  x + l[Cov(AL Ax% Cov(X ~ X ~ -~ ~- 
D 1 Da D 2 + C o v ( A x , A  s ) + C o v ( A x , A x ) ] .  (39) 

In the conditional distribution, E (AxS IX s) -- fi2 (X s_/xx), 
and E(A~ i IX s) = fix 20(X s - a x ) ,  for i = 1, 2. Replac- 
ing random variables by their conditional expectations 

Cov(XOl, xO2) 1 x 1fix209arX+ 1 2 = -~ 9arA + 7 ~ fix 02 s x 

= ~ Va~[ l  + fix 2 0(2 + 0)].  (40) 

The contribution of the additive genetic variance is 
identical to the result obtained by Latter (1965) but 
differs from the one presented by Bulmer (1980). 

The second covariance of interest is 

= 1 CovAXY[1 + fix2 0(2 + 0)I (41) C~176 Y~ 7 

Finally, 
Cov(yOl, y~2) = 1 Y -~ 9arA[1 + O 2 fix 2 0(2 + 0)]. (42) 

Offspring-Parent 

The covariances of interest are Cov(X~ Cov(X~ s) 
Cov(Y ~ X s) and Cov(Y ~ yS); the superscripts o and S 
indicate offspring and sire, respectively. First, we have 

Cov(X ~ X s) = Cov (-~a AxS + -gl AxD + ex + E~:, X s) 

= ~ Cov[fix2_~x), s X ]+-~ Cov [fix2 (xD--~X), X s] 
1 X -- -ff 9arA (1 + 0). (43) 

Similarly 

Cov (x ~ yS) = Cov (~ AS + �89 Ax ~ + e~ + E~,, Yb 
COvxy s 

= } ~ov~+ �89 Cov[~(x ~ - ~x), ~ (x - ~x)] 

= } (COVA xY + fix 2 e Covxy) (44) 
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where 9arx and Covxr are the equilibrium phenotypic 
variance and covariance, respectively. Also 

Cov (yo, X s) 1 A D + ey + E,}, X s) = Coy ( i  A s + 

1 1 = -~ Cov ~ 2 , Xs 
(7 x 

[ (~ fX I~IY ~rX CrY ( x D  --/-/X) t 
+ ~ Cov ~x ~ , x ~ 

1 QovXY (1 q- Q). (45) = 5  

The fourth covariance of interest is 

Cov (yo, yS) = Cov [~1 AyS + ~1 A~ + ev + E,~, yS] 

1 ~/ar~ + 1 [ 01ix ~ &x&Y 
= 5 "~ COV - -  ( XD -- fiX), 

OX 

(7 fix fY 3x ~y ] 
~x 2 (x s -/~x) 

J 
1 VarY(1 + 6 ~ 0 ax2). = 7  

(46) 

(47) 

Grand-Offspring-Grand-Parent 

The variables X ~ and yo denote phenotypic values in 
the grandoffspring and X N, yX refer to measurements 
in the grandparent. The covariances of interest 
are Cov(X ~ Cov(X ~ Cov(Y~ N) and 
Coy (yo, yN). 

Consider first 

Coy (X ~ X N) = Coy (2~ AxS q._ 21 A D + ex + E~, X N) 

1 [Cov (AS, X N) +Cov  (A D, XN)] (48) = ' ~  
Now 

1 f~ Coy (A s, X N) =Cov (1 AN + 5 Ax + e~r X N) 

1 {Cov [ f2(xN-- /~ /X)  , X TM] = 7  

+ Cov [fix2 (x  ~- .x) ,xN]} 

1 9arX(1 + 0) (49) = 7  

where lq is the other parent of S. Furthermore, 

Coy (A D, X N) = Coy [0 fx  2 (X s -Px) ,  X TM] 

1 9arxA(l + O) 0 fix z (50) 

which follows from (43). Using (49) and (50) in (48) 

Cov(X ~ X TM) = } 9araX(l + O) (1 + ~ l~x2). (51) 

The second function of interest is 

1 A ~  + ex + E~:, yN). (52) Coy (X ~ yN) =Cov (~ A s + -g 

Replacing the A's by their expectations conditional on 
the X values, it can be shown that 

= 1 ~r X ~.y (0  fiX fly "k- r ~ fix 2) (53) Coy (A s, yN) -ff 

where r is the phenotypic correlation between X and Y. 
Likewise 

Cov (A D, yN) = f12 Q Cov (X s, YN) (54) 

1 fix 2 Q(dfix fir &x by + fi2 0 r &x ~r) = 7  

following from (44). Using (53) and (54) in (52) 

C~176 --IAgax&v(GfxfiY+r0fix2)(l+efix2) - 
(55) 

The third covariance is 

1 A ~  + er + E,}, X N) . (56) Cov (yo, X N) = Cov (-~ A s + 

It can be shown that 

Cov(A s, X N) = -} CovXV (1 + ~) (57) 

and 

= 1 ~ovXY ~IX2 (i q_ . Cov (A~,X N) 2 Q ~)) (58) 

Hence, (56) becomes 

: 1 ~ovXV(1 +O) (1 +Qfix z) (59) Cov(Y~ N) 7 

Finally, 

Cov (yo, yN) = Cov (_fix AyS + 71 A~ + ey + E~, yN) . (60) 

Now 

1 ^2 2 Cov(AS,y  N) - ~ a v ( f i v + 6 t ] x f y r e ) .  (61) 

Likewise 

Cov(A~,yy)  = 1 ^2 fix2 0( f i~6z+Ofixf iyrq) .  (62) -~ou 

Collecting (61) and (62) in (60) one obtains 

Cov (yo, yN) 
^z [ f~ (1  + d z fix z Q) + 0 f x f i y r  ~(1 + fix z Q)] (63) = ] -  O'y 

which yields the usual result for the grandoffspring- 
grandparent covariance under random mating by lett- 
ing e = 0. 
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